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Measuring proton and neutron production cross sections 
needed for cosmic ray studies

The initiative is funded by the Cosmochemistry program,
Office of Space Sciences 

NASA

individuals have funding from both NASA and other agencies.



Why measure cross sections (1) ?

• Cosmic ray particles interact with elements found in meteorites and the lunar surface
to produce small  quantities of radionuclides and stable isotopes.

• We can analyze these cosmogenic nuclide records to learn the history of both the
object and the cosmic rays.

• Solar proton interactions are limited to the top few centimeters of an extraterrestrial
object.

• Galactic cosmic rays particles (most are protons) penetrate deeply into an object and
their interactions produce many neutrons. These neutrons also undergo interactions
contributing to the total cosmogenic nuclide inventory.

• We need very good cross section information for the theoretical calculations used to
interpret the cosmogenic nuclide records.



Why measure cross sections (2) ?

•We have good measurements for most proton production cross sections.

•We have few measurements of any of the needed neutron production cross sections.

• We are making two kinds of neutron production cross section  measurements:

           a) Using quasi-monoenergetic neutron beams
           b) Using ‘white’ neutron beams.

•The information from these adjunct experiments will allow us to make better estimates
of the galactic cosmic ray contribution to the total cosmogenic nuclide production.



Figure 1: Taken from Jull et al.: 14C (dpm/kg) as a function of depth in Apollo 16
rock 68815,292. The plot shows the experimental measurements (•) compared to the
best fit of SCR of R0 = 115 MV and J10 = 103 p/cm2/s, plus GCR (solid line), as well
as the calculated GCR production, plotted as the dashed line. Bulk density of the
rock is 2.8 g/cm3. Also shown is the higher surface value measured by Jull et al. in
1995, from acid etching of the rock surface. This sample shows the effects of
surface implantation by solar-wind 14C in the top few nanometers.

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 5 1 0 1 5

6 8 8 1 5

G C R

G C R + S C R  ( R
0

=  1 1 5 ;  J
1 0

=  1 0 3  p / c m 2 / s )

6 8 8 1 5  s u r f a c e  e t c h  ( J u l l  e t  a l ,  1 9 9 5 )

1
4 C

 (
g

/c
m2
)

d e p t h  ( g / c m
2

)



0.01

0.1

1

10

10 100 1000 10
4

O(p,x)1 4C

This col laborat ion

Tamers  &  De l ib r ies  ( renorm.  Adouze)

Roman e t  a l

C
ro

ss
 s

e
ct

io
n

 (
m

b
)

Inc iden t  p ro ton  energy  (MeV)

Error  bars  are  as  shown or  are  smal le r  than the symbols  p lo t ted.



0.1

1

10

0 20 40 60 80 100

SiO
2
(n,x)14C

This work
IM90 (Be)
IM90 (Li)

Neutron Energy (MeV)
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The 14C AMS determination is suspect.
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Using the corrected flux value
the cross section is ~4 mb. 

SiO2 targets were irradiated at neutron
energies of 76 and 114 MeV in April
1999 to measure O(n,x)14C.  Still have
to do the AMS determination of 14C.



Neutron (estimated, red circles) and proton (measured, black circles)
cross sections for 10Be production from oxygen. (Leya et al, 2000)
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• Two or more neutron
monitors are calibrated
against a spectrometer
which measures the absolute
neutron fluence (at 0o).

• The neutron spectra at 0o

and 16o are compared in
order to determine a “tail”
correction. (see later).

Stage 1.  
Neutron calibration measurements

These measurements are made
using a low neutron intensity
(beam current < 100 nA,
pulse selector on) and require
5-8 hours of running.
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Spectral fluence measured for 100 MeV protons on a natLi target.

A normalization factor used in the procedure developed to correct for the low-energy
tail of the neutron spectrum is determined from a comparison of neutron spectra
measured on the 0°° and 16°° neutron beams.

Correction for low-energy neutron “tail”

 
 “High energy neutron reference fields for the calibration of detectors used in neutron spectrometry
R. Nolte, M.S. Allie, P.J. Binns, F.D. Brooks, A. Buffler, V. Dangendorf, J.P. Meulders, H. Schuhmacher, B. Wiegel
Presentation at the International Workshop on Neutron Field Spectrometry in Science, Technology and Radiation 
Protection, Pisa, Italy, June 2000           (Paper submitted for publication in special edition of NIM A)



Stage 2.
Target irradiation

Two identical target stacks are
mounted in the two neutron
beams  (0° and 16°) and
irradiated for the remainder of
the weekend, using a
high-intensity neutron beam
(>4000 nA,  pulse selector off).

The calibrated neutron monitors
measure the neutron fluence.



Irradiation set-up at LANSCE showing the target holder downstream of the Uranium 
fission chamber used to monitor the beam. The 1998 target holder is shown. Monitor foils 
are included in the target stack to study possible monitor cross sections.
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Extinct radioactivities in meteorites (1)

•Fluctuating x-winds might  revive an earlier explanation for the extinct radioactivities found in
meteorities. The bombardment of rocks by cosmic rays from the young sun.

•Conventionally, this idea foundered because a p + alpha flux sufficient to produce 41Ca and 53Mn
at the level found in meteorites failed by about 2 orders of magnitude to produce enough 26Al.

•However, impulsive flares arising from reconnection events in the reconnection ring, where CAI
precursors lie before they are launched by an inwardly encroaching x-wind, accelerate numerous
3He nuclei to mega-electron volts per nucleon and higher energies.

•CAIs are Ca-Al-rich inclusions of primitive
cbondrite meteorites and are the oldest solar
system materials, which crystallized in the
solar nebula.

•Recently, evidence for 10Be in-situ decay in
CAIs  was found. 10Be is only produced by
spallation reactions, so its existence in early
solar system materials indicates that there is
intense irradiation processes in the solar
nebula.


